"Toward Engineering Simulation in the Petrochemical Industry: From Discovery to End-Use"

Ahmad H. Haidari, Ph.D.
Global Industry Director Process, Energy and Power
Observation

• Innovation and engineering drive many of future technologies in energy production, processing, and end use.

• Recent years has shown a broad application and accelerating rate of adoption of engineering Simulation tools
 – Coupling of reservoir and well bore
 – Drilling and production
 – Storage and Transport
 – Refining and processing
 – End use design for example:
 • Formulation and engine performance
 – Material handling and processing
 • Extrusion
 • blow molding

• The rapid growth and a broader acceptance are due:
 – Advanced computational and numerical techniques,
 – Enhanced physical models
 – Usability improvements,
Objectives

- Brief overview of ANSYS activities in Petrochemical
 - Review the breath of the engineering simulation applications
 - Provide an update on some of the underlying technologies
 - Meshing
 - FSI
 - Particulate flows
 - In-cylinder-combustion
 - Parallel processing
 - Provide examples of work underway at ANSYS for Advanced Petrochemical applications
 - Flow assurance
 - Slug flow
 - Sand and water management
Sample examples Drilling/Production
Sample examples Refining/Processing
Offshore Hydrodynamics

- Wave impact
- Sloshing
- Transport

• Offshore Structures
 - Fixed
 - Steel Jackets
 - Concrete
 - Floating
 - FPSOs
 - SPARS
 - Semi-Submersibles
 - Risers
 - Ship
 - Design
 - Offloading
 - Shielding
 - Applications
 - Mooring systems
 - Lifting operation – AMOG
 - jacket launch

Transportation of Spar Truss on Heavy Lift Vessel
Petrochemical Industry Advanced Technology Needs

- **Selected list:**
 - Complex geometry and grid motion
 - Wide range of numerics
 - Advanced physics
 - Combustion and Reaction
 - Multiphase
 - Turbulence-Chemistry
 - Multi-scale
 - Multiphysics
 - HPC and Parallel computing
Recent Software Development Activities

- **Meshing**
 - Wrapping Technology
 - Immersed boundary condition
- **Multiphase**
- **In-Cylinder Combustion**
- **Parallel processing**
Wrapping Technology
- Clean up complex geometry
- Accelerate meshing

Immersed boundary condition
- Simulations @ non-body conforming meshes
- Reduced time for geometry & mesh preparation
- Boundary conditions via reconstruction schemes
- **Mesh morphing**
 - Cylindrical component displacement option
 - Mesh quality histogram in ‘out’ file
- **One-way and two way coupling**
- **Surface loads**
 - Forces
 - Energy fluxes
- **Volume loads**
 - Temperature
• Setup of multiple configurations
• Re-meshing
• Combustion
• Particle tracking & sprays
• Wall films
• ...
Multi-Phase – Euler-Lagrange

- Spray break-up models
 - Primary – Huh & Gosman
 - Secondary

- Validation report
 - Collaboration with Robert Bosch

Hiroyasu & Kadota, case 1

© 2008 ANSYS, Inc. All rights reserved.
CFX - Multi-Phase – Euler-Lagrange
Multi-Phase, Multi-fluid VOF

- Multi-fluid free surface flow model (VoF)
 - Separate velocities for each phase
 - Explicit interface tracking scheme
- Multi-fluid free surface flow model (VoF)
 - Heterogeneous model
 - Separate velocities for each phase
 - Explicit interface tracking scheme
Modeling particulate systems

- Sedimentation, transport
- Separators & reactors
- Spray dryer and congealers
- Coaters and granulators
- Filtration products
- Slurry flows
- Solid suspension
- Trickle bed reactors
- Risers
- Fluidized beds
- Pneumatic conveyors,
- hoppers, silos
- ...
Diluted vs. Dense Flow

- **1-way coupling**: negligible effect on turbulence
- **2-way coupling**: particles enhance turbulence
- **4-way coupling**: particles reduce turbulence

Relative motion between particles
- Dilute: Large
- Dense: Small

Particle-particle interaction
- Dilute: Weak
- Dense: Strong

Apparent viscosity of the solid phase
- Dilute: Particle-fluid interactions
- Dense: Particle-particle interaction
Overview of Modeling Approaches

- Direct Numerical Simulation
 - Trajectories of individual particles
 - Flow around individual particles

- Eulerian Granular
 - Continuum model (multi-dimension)
 - Local averaging

- Particle Motion
 - Euler-Lagrangian
 - Grid elements

- Fluid Motion
 - DNS/DEM/MPM

Concept illustration borrowed from Prof. Tsuji Presentation at WCPT5, April 2006
Particle Models Available

- Modeling particulate flows have been an area of focus for over a decade; current capabilities include:
 - Particle Methods
 - DPM for dilute phase (steady and time dependent)
 - Macroscopic Particle Model (MPM) for large particles
 - Dense-phase discrete particle model (DP-DPM) for dense flows with large size distributions
 - Continuous Methods
 - Euler-Granular
 - Euler-Granular with Frictional viscosity for dense phase
 - Hybrid Methods
 - Coupled simulations
 - DEM
<table>
<thead>
<tr>
<th>Method</th>
<th>Particle to particle interactions</th>
<th>Coupling with cont. phase</th>
<th>Additional physics & chemistry</th>
<th>Particle shape, size distribution</th>
<th>Order of # of particles</th>
<th>Computation speed & parallelization</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEM</td>
<td>Direct contact and other forces implementation</td>
<td>None or through ext. CFD code</td>
<td>Not implemented</td>
<td>Arbitrary (clustered spheres) shape & distribution</td>
<td>~10^5</td>
<td>Strongly dependent on # of particles, not parallelized, Rel. slow</td>
</tr>
<tr>
<td>DPM</td>
<td>Collisions & breakup indirectly; packing limit not accounted</td>
<td>Correlation-based drag force</td>
<td>Coupled with all std. Fluent models, easy to customize</td>
<td>Spherical and ellipsoidal</td>
<td>~10^6</td>
<td>Very fast, parallelized</td>
</tr>
<tr>
<td>DP-DPM</td>
<td>Particles are represented by clusters, packing limit is maintained</td>
<td>Correlation-based drag force</td>
<td>Coupled with all std. Fluent models, easy to customize</td>
<td>Spherical, arbitrary size distribution available</td>
<td>No limit on part/clusters (tested up to ~ 2.5x10^5)</td>
<td>Rel. fast, affected by mesh size & # of particles, parallelized</td>
</tr>
<tr>
<td>MPM</td>
<td>Direct contact and other forces implementation</td>
<td>Drag & torque resolved</td>
<td>Further customization possible</td>
<td>Spherical*, arbitrary distribution</td>
<td>~10^5</td>
<td>Slow, parallel tracking (interactions not parallel)</td>
</tr>
<tr>
<td>Euler Granular</td>
<td>Indirect: solid pressure & radial distr., other forces implemented indirectly</td>
<td>Cell-avg. drag, lift & other inter-ph. terms</td>
<td>Coupled with all std. Fluent models; easier to customize</td>
<td>Spherical; Size dist. through population balance</td>
<td>Practically unlimited</td>
<td>Fast, depends on the mesh size & physics only, parallelized</td>
</tr>
</tbody>
</table>

*arbitrary shapes being tested

!!! This table is for tentative and qualitative comparison
!!! Because of a continuous development, models continue to evolve
Challenge Problem: gas-solid Riser

- Expect risers to be a tough challenge
 - Complex multi-scale physics
 - Strands, clusters etc.
 - May stretch validity of assumptions of parcels
- Preliminary results show some promise shown here
- More qualitative validation is needed
ANSYS Technology Update

Parallel Computing

- **Discretization & Solution**
 - Optimization of equation assembly & solution
 - Iteratively bounded advection & transient scheme for turbulence quantities

- **Much larger problems are being molded**

- **Scalability, especially on large clusters**
 - Example; Opteron/EM64T Inamd64 version
 - Currently under testing
 - 1 billion cell case
 - 700 million cells per processor per core
 - Opteron/EM64T Inamd64
Advanced oil and gas applications

• Flow Assurance
• **Motivation**
 – The trends in deep and ultradeep production requires robust understanding and planning of:
 • Production Enhancement
 • Flow Assurance in increasingly demanding conditions
 – Flow Assurance requires a systematic analysis including
 • thermal and hydraulic performance
 • multi-phase flow
 – Slugging
 – Water and Sand management
 – hydrates and paraffin or wax precipitation
Produced water

- Produced water is not a product
- For offshore operations, the disposal
 - Re-injection to the formation
 - Transport onshore.
- Produced water is “contaminated” with high salinity, oil and metal
- Polishing produced water
 - clarifiers,
 - hydrocyclones,
 - membrane separation,
 - ultraviolet light treatment,
 - various separators
- Engineering Simulations tools are used to
 - Reduce risk
 - Increase reliability of equipment and processes.
Application Focus
Sand Management and Transport

• Sand is often produced out of the reservoir in both onshore and offshore production systems, particularly in reservoirs that have a low formation strength.

• Sand production may be continuous, or sudden - as when a gravel pack fails.

• The sediment consists of finely divided solids that may be drilling mud or sand or scale picked up during the transport of the oil.

• Sand deposition could lead to corrosion of the pipeline.

• Problem of sand deposition and re-entrainment
 – Inclined pipelines, pigging sand plug pipeline.
Slurry Flow Regimes

- Slurry flow is classified into different regimes
- The transition between regimes depends on
 - Solids concentration
 - Velocity
 - Particle Diameter
 - Turbulence
- Mostly derived for high sand concentrations (>1%) and large particle diameter (>100um)
- Typical:
 - 5-50 lb sand / 1000 bbl liquid
 - $U_{SL}/U_{SS} \sim 50000-500000^{**}$

Study Objectives

• Lack of data on low volume fraction \(<1\text{vol}\%\) and small diameter \(<50\mu\text{m}\)

• Validation work using experimental data
 – Range of volume fractions
 – Range of sand particle diameter
 – Different pipeline diameters

• Gain confidence in modeling methodology and extend approach to:
 – Low concentrations and particle diameter
 – Pipeline orientation

• Influence of turbulent fluctuations
 – Interphase turbulent momentum transfer
 • Drift velocity
 – Volume fraction diffusion
Pressure Drop Validation

• Experimental data from:

• Experimental Conditions
 – Horizontally straight pipeline length, $L = 1.4$ m
 – Pipe I.D. = 0.0221 m
 – Silica sand–water slurry
 • Water density $\rho = 998.2 \text{ kg/m}^3$
 • Sand density $\rho = 2381 \text{ kg/m}^3$
 • Sand diameter $d_p = 0.000097–0.00011 \text{ m}$
 – Inlet sand concentration = 20 vol%

• Assumed fully developed, fully mixed inlet slurry flow

• Mesh size: 140K cells
Pressure Drop Validation

- Good agreement with experimental data
- The influence of the solids volume fraction is captured with the Wen & Yu drag model
- Flow regime – heterogeneous transport
Predicting Solids Dispersion

• Analysis of the following variables:
 – Slurry velocity
 – Solids concentration
 – Solid particle diameter
 – Mesh: 0.5 million cells

<table>
<thead>
<tr>
<th></th>
<th>34</th>
<th>27</th>
<th>27</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids conc., vol%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle dia. (d_p) (µm)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>370</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>6.00 0</td>
<td>6.000</td>
<td>2.000</td>
<td>6.000</td>
</tr>
</tbody>
</table>

Well-mixed Slurry (Sand/Water) 150 mm diameter pipe \(\rho_{\text{sand}}=2650\ \text{kg/m}^3\) 3 m

Test section

© 2008 ANSYS, Inc. All rights reserved.
Influence of Particle Concentration

- Flow regime is nearly homogeneous
 - $V >> V_{\text{critical}}$
- Solids almost uniformly distributed across the pipe diameter
- Experimental measurements mostly in the center of the pipe
 - Good agreement with simulation results
- Drop in slurry concentration near pipe wall

$V_{\text{slurry}} = 6 \text{ m/s}$
$\rho_p = 120 \mu\text{m}$
Influence of Particle Diameter

- Flow regime is heterogeneous transport
 - \(V >> V_{\text{critical}} \)
- Solids concentration increases near the pipe bottom with the increase in particle diameter
- Experimental measurements in good agreement with simulation results
- Drop in slurry concentration near pipe wall
Influence of Slurry Velocity

- Flow regime is heterogeneous transport
 - $V > V_{\text{critical}}$
- Solids concentration profile changes with drop in velocity
- Increase in slurry concentration near pipe wall at lower velocity
- As the granular temperature increases, particles are pushed from the wall
- Dissipation from collision is insufficient to counteract the higher values

$d_p = 120 \, \mu m$

Y / D

Solids Volume Fraction

Fluent CFD: $V_s = 2 \, m/s, C_s = 27\%$
Fluent CFD: $V_s = 6 \, m/s, C_s = 27\%$
Fluent CFD: $V_s = 2 \, m/s, C_s = 34\%$
Fluent CFD: $V_s = 6 \, m/s, C_s = 34\%$
Matousek, 2002 ($V_s = 6 \, m/s, C_s = 34\%$)
• Eulerian granular multiphase was applied to model dilute and dense slurry flows in pipes
• Good agreement was obtained for the pressure gradient and the solids distribution
• The influence of turbulence on the interphase momentum exchange (Eulerian) is required for this class of problems
• For dilute flows, incorporating the influence of turbulent dispersion in the volume fraction equation maybe required
• Further studies - pipe orientation, re-entrainment, flow regime with stationary bed, polydispersed solids
Application Focus
Predicting Slug Flow

• Multiphase pipeline analysis for flow assurance
 – Hydrodynamic slugging
 – Terrain slugging

© 2008 ANSYS, Inc. All rights reserved.
Hydrodynamic slugging
Experimental Setup

• Experiments conducted in WASP at Imperial College
 – No influence of downstream conditions on upstream gas/liquid flow rates
• 78 mm diameter x 37 m pipe
• 0.5 m long inlet section with separate gas/liquid inlets and splitter plate
• Air/Water system
 – $v_{SG} = 4.64$ m/s
 – $v_{SL} = 0.61$ m/s
 – Inlet pressure = 1.15 bar
• Expected flow regime is slug flow
Hydrodynamic slugging
Numerical Setup

• **Numerics**
 – NITA with Fractional step
 – Default Solver Controls
 – PRESTO! and First-order discretization
 – Green gauss cell-based gradient solver
 – Realizable k-epsilon
 – Geo-reconstruct

• **Phase Interaction**
 – Surface tension = 0.072 N/m

• **Calculation time on HPC queue (Opteron/IB)**
 – Global Courant Number = 1
 – Variable time step ~ 1e-5 – 1e-4s
 – Solution time = 6 s / iteration – 265475 iterations/87.09 seconds real time on 16 CPUs
 – Solution time = ~80 hours of CPU time per second of real flow time

• **Mesh Size 1.03 Million**
Hydrodynamic Slugging with VOF

Interface height at 53.23 s

Snapshot of interface at 53.23 s
Comparison of Height Profiles

- Characteristic gradual rise in interface height followed by rapid drop is reproduced by the VOF model.
- Lower dips towards the end of the pipe reproduced.
- Stratified-wavy interface near inlet is reproduced.

VOF

Area-Weighted Average Y-Coordinate

L.W.Avg Y-Coord
- z=1.5
- z=13.90
- z=34.5

Convergence history of Y-Coordinate

Convergence history of Y-Coordinate

Δt_{slug passage} ~ 5 seconds

Top of pipe

Experimental

© 2008 ANSYS, Inc. All rights reserved.
• Experimentally determined slug frequency varies along length of pipe though slugs formed by ~5m remain relatively intact to the end of the pipe
 – Slug frequency ~ 0.2 – 0.3 s\(^{-1}\)
 – Range of time interval between slugs of 1 – 10 seconds
• The VOF simulation shows similar range of slug interval and frequency
Recap

- Engineering Simulation tools are being used to solve a broad range of applications in the petrochemical and related industries.
- A selected set of related software development capabilities we reviewed. Highlighting, meshing, FSI, multiphase, and parallel processing.
- A review of application of CFD to predicating slugs and sand transport was presented.
Acknowledgements

• Lanre Oshinowo
• Georg Scheuerer
• Chris Wolfe